banner



Derivation Of The Poisson Distribution

Conditional Poisson distribution restricted to positive integers

In probability theory, the nil-truncated Poisson (ZTP) distribution is a sure discrete probability distribution whose back up is the gear up of positive integers. This distribution is also known as the provisional Poisson distribution [1] or the positive Poisson distribution.[two] It is the conditional probability distribution of a Poisson-distributed random variable, given that the value of the random variable is not zero. Thus information technology is impossible for a ZTP random variable to exist zero. Consider for example the random variable of the number of items in a shopper's basket at a supermarket checkout line. Presumably a shopper does not stand up in line with nix to buy (i.e., the minimum purchase is 1 particular), so this miracle may follow a ZTP distribution.[3]

Since the ZTP is a truncated distribution with the truncation stipulated equally k > 0, one can derive the probability mass function g(k;λ) from a standard Poisson distribution f(k;λ ) equally follows: [4]

g ( chiliad ; λ ) = P ( X = k X > 0 ) = f ( g ; λ ) 1 f ( 0 ; λ ) = λ yard e λ yard ! ( 1 e λ ) = λ m ( e λ 1 ) 1000 ! {\displaystyle g(grand;\lambda )=P(Ten=k\mid X>0)={\frac {f(chiliad;\lambda )}{1-f(0;\lambda )}}={\frac {\lambda ^{k}due east^{-\lambda }}{one thousand!\left(1-east^{-\lambda }\right)}}={\frac {\lambda ^{thou}}{(e^{\lambda }-1)k!}}}

The mean is

E [ Ten ] = λ 1 e λ = λ due east λ east λ i {\displaystyle \operatorname {E} [Ten]={\frac {\lambda }{1-e^{-\lambda }}}={\frac {\lambda e^{\lambda }}{due east^{\lambda }-1}}}

and the variance is

Var [ X ] = λ + λ 2 1 e λ λ ii ( 1 e λ ) 2 = Eastward [ 10 ] ( i + λ E [ X ] ) {\displaystyle \operatorname {Var} [10]={\frac {\lambda +\lambda ^{two}}{i-e^{-\lambda }}}-{\frac {\lambda ^{two}}{(i-e^{-\lambda })^{two}}}=\operatorname {East} [X](1+\lambda -\operatorname {Eastward} [Ten])}

Parameter interpretation [edit]

The method of moments estimator λ ^ {\displaystyle {\widehat {\lambda }}} for the parameter λ {\displaystyle \lambda } is obtained past solving

λ ^ 1 due east λ ^ = x ¯ {\displaystyle {\frac {\widehat {\lambda }}{1-e^{-{\widehat {\lambda }}}}}={\bar {x}}}

where x ¯ {\displaystyle {\bar {x}}} is the sample hateful.[1]

This equation does non accept a closed-form solution. In practice, a solution may be institute using numerical methods.

Generating zip-truncated Poisson-distributed random variables [edit]

Random variables sampled from the Zippo-truncated Poisson distribution may exist achieved using algorithms derived from Poisson distributing sampling algorithms.[5]

          init:          Allow          g ← 1, t ←          e          −λ          / (i -          e          −λ) * λ, southward ← t.          Generate uniform random number u in [0,1].          while          due south < u          do:          k ← grand + 1.          t ← t * λ / grand.          s ← south + t.          return          k.        

The toll of the procedure in a higher place is linear in k, which may be large for large values of λ {\displaystyle \lambda } . Given admission to an efficient sampler for non-truncated Poisson random variates, a non-iterative approach involves sampling from a truncated exponential distribution representing the fourth dimension of the first event in a Poisson indicate process, conditional on such an effect existing.[vi] A simple NumPy implementation is:

          def sample_zero_truncated_poisson(charge per unit):         u = np.random.uniform(np.exp(-rate), i)         t = -np.log(u)         return one + np.random.poisson(rate - t)        

References [edit]

  1. ^ a b Cohen, A. Clifford (1960). "Estimating parameters in a provisional Poisson distribution". Biometrics. sixteen (two): 203–211. doi:10.2307/2527552. JSTOR 2527552.
  2. ^ Singh, Jagbir (1978). "A characterization of positive Poisson distribution and its application". SIAM Journal on Practical Mathematics. 34: 545–548. doi:10.1137/0134043.
  3. ^ "Stata Data Analysis Examples: Nix-Truncated Poisson Regression". UCLA Institute for Digital Research and Educational activity. Retrieved 7 August 2013.
  4. ^ Johnson, Norman L.; Kemp, Adrianne W.; Kotz, Samuel (2005). Univariate Discrete Distributions (third ed.). Hoboken, NJ: Wiley-Interscience.
  5. ^ Borje, Gio (2016-06-01). "Goose egg-Truncated Poisson Distribution Sampling Algorithm". Archived from the original on 2018-08-26.
  6. ^ Hardie, Ted (1 May 2005). "[R] simulate aught-truncated Poisson distribution". r-aid (Mailing list). Retrieved 27 May 2022.

Derivation Of The Poisson Distribution,

Source: https://en.wikipedia.org/wiki/Zero-truncated_Poisson_distribution

Posted by: tyrephost1941.blogspot.com

0 Response to "Derivation Of The Poisson Distribution"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel